If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1=49-64u^2
We move all terms to the left:
1-(49-64u^2)=0
We get rid of parentheses
64u^2-49+1=0
We add all the numbers together, and all the variables
64u^2-48=0
a = 64; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·64·(-48)
Δ = 12288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12288}=\sqrt{4096*3}=\sqrt{4096}*\sqrt{3}=64\sqrt{3}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{3}}{2*64}=\frac{0-64\sqrt{3}}{128} =-\frac{64\sqrt{3}}{128} =-\frac{\sqrt{3}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{3}}{2*64}=\frac{0+64\sqrt{3}}{128} =\frac{64\sqrt{3}}{128} =\frac{\sqrt{3}}{2} $
| 3=12-4y | | 9x-16+3x+11+7x-5=180 | | -4(-2y+5)=20 | | 4x=35=51 | | -4(3x+6)-2x=4 | | 5(2s+7)=-25 | | 7(2y-9)=21 | | 5y+10=6y | | t/14+11=5 | | 8=15x+22.5 | | x/17=15/100 | | 0.5(10x+15)–32=2x+6+3x | | 6=10−2z | | t/9-3=8 | | 3x+1-2x+4=180 | | 2x-2(1-3x)=5+3(x-2) | | 8x-27=-19 | | 4(f+32)=7+4f | | x(2x-2)+(x-1)=0 | | 6.6y+y+6.5=y-6.7 | | 6x−7=26 | | 4(x+2)−2(x−3)=20 | | (3^2-2^3)^66=x | | 2x−3(2+1)=13 | | 6x+12=15+6x | | 5x+2=10+7x | | -6+(4-4x)-(1-x)=2x-2(x-3) | | 18x-42=6x+12 | | -7a+5+8a=6-25 | | 18-8x=2x-2 | | 2(165/x)-22x=44 | | 2/3x-5/6x=1/x+1 |